
1

Developing a Successful Metrics Program

Title: Developing a Successful Metrics Program
Presenters: Dr. Linda H. Rosenberg, Lawrence E. Hyatt
Track: Metrics
Day: Wednesday, April 24, 2995
Keywords: Metrics, software, quality, risk
Abstract:

This paper discusses how affordable metric programs can be applied to
help project managers and developers evaluate the quality of their project’s
products and to help them evaluate and track project risks. A core set of
relevant attributes and metrics are developed for all software development
phases. The Goal/Question/Metric paradigm (GQM) is used to
demonstrate how a meaningful metrics program can be started and uses
data from projects at Goddard Space Flight Center (GSFC) to demonstrate
some analysis and application techniques.

This paper supplies both project managers and software developers with
techniques to initiate a metrics program that yields timely, relevant, usable
information at minimal cost.

1. Introduction

At the Goddard Space Flight Center (GSFC), and indeed across NASA, there is a
focus on producing "quality software". This focus is not just within NASA; it can be seen
in almost any organization where software results contribute to success, from
programmable microwaves to watches to toys - quality products depend on quality
software. Everyone agrees that quality is important, but few agree on what quality is or
how to measure it. Kitchenham notes that 'quality is hard to define, impossible to
measure, easy to recognize'.[8]

The Software Assurance Technology Center (SATC) was established in 1992 in
the Systems Reliability and Safety Office at NASA’s Goddard Space Flight Center
(GSFC). The SATC was founded as a center of excellence in software assurance,
dedicated to making measurable improvement in the quality and reliability of software
developed for GSFC and NASA. The SATC has programs in four areas: Software
Standards and Guidebooks; Software Metrics Research and Development; Assurance
Tools and Techniques; and Project Support and Outreach.

The objectives of the software metrics program of the SATC encompass three
areas: Quality Assessment; Risk Management and Control; and Process Improvement.
To accomplish these objectives, the metrics program works with project managers and
developers (both NASA and contractor) to collect measurements and develop metrics that
assist them in evaluating the quality of the products (requirement documents, design

2

documents, code, test plans, etc.) and the risks to their projects. This work resulted in the
formalization of the Software Quality Metrics Program.

But developing a metrics program is not easy. It has many possible pit-falls that
can lead to the ruin of the metrics program itself and possibly the project if incorrectly
applied. Section 2 discusses the foundation of a software quality metrics program based
on the evaluation of quality and risk projections. Practical components of a metrics
program such as costs, benefits and the development stages are discussed in Section 3. In
Section 4, a basic metrics program is outlined with core attributes and metrics that are
applicable to any software development project. How to develop and implement a metrics
program is discussed in Section 5. The Goal/Question/Metric Paradigm is explained and
then applied to a sample metrics program. This example starts by defining goals,
developing applicable questions, and demonstrating the metric analysis using GSFC
project data. The paper concludes with data collection and screen development guidelines
and a discussion of a tool developed at GSFC for capturing, maintaining and distributing
data on-line using the World Wide Web.

2. Software Quality Metrics Program

The SATC has developed a Software Quality Metrics Program and associated
metrics that supports risk management and quality assessment of the processes and
products of software development projects. The SATC program, shown in Figure 1,
meets several criteria that are important to NASA software project managers. It contains
dynamic elements, so that projections in time can be made to effect the direction of the
project. It takes into consideration project goals and milestones, so that it can be tailored
for the particular project. It assists in determining risks, so that management action can be
taken. The combination of these three elements makes the SATC program unique.

3

Quality Assessment

 Define, standardize and apply
Risk Management
 Identify, prioritize and track

Improved Product

Improved Process

Process
Improvement

Figure 1: SATC Software Quality Metrics Program

In the top portion of Figure 1, the two primary objectives are stated. First, risk
management - the relevant project risks must be identified, prioritized, then tracked
through the life of the project. By identifying and prioritizing risks, project management
will customize the metrics program to specific areas relevant to their project. In assessing
the quality, relevant product quality attributes must be defined for the project. The
attributes chosen customize the metrics program to the project goals. Corporate and
industry standards must be identified then applied.1

Applying these objectives leads to two actions: improve the product and improve
the process. Although many software development organizations espouse that a well
defined process results in a good product, there is little evidence that conformance to
process standards guarantees good products. [7] Therefore, metric programs should be
comprehensive - dynamically evaluate the development process as well as statically
evaluate the products. Many organizations, such as the Software Engineering Institute at
Carnegie Mellon University, and the Software Engineering Laboratory at Goddard Space
Flight Center have developed very comprehensive programs for software development
that focus on process improvement. The metrics programs developed by these institutes
support process improvement with little emphasis on product evaluation. The SATC
metrics program discussed in this paper focuses on the evaluation of life cycle products
using static metric analysis and is complementary to these programs. Project developers
and managers need both sets of metrics.

1 Reference “A Software Quality Model and Metrics for Identifying Project Risks and Assessing Software
Quality” by L. Hyatt in the “Quality” track of this conference.

4

3. Metric Program Practical Components

3.1 Cost

It is difficult to pin down the costs of a metrics program because metrics are
usually just one aspect of an overall improvement program. When investigating the
feasibility of starting a metrics program, it is often found that managers are individually
collecting some form of data. This decreases initial program start up cost. Accurate and
complete measurements are not inexpensive; comprehensive metrics programs for
software products and process annual costs can be 2 to 3 percent of the total software
budget for collecting hard data.[6] Attempts to pin down the cost of metrics hide the real
issue, however, developers don’t really have a choice. The cost of not implementing a
software metrics program can be measured in terms of project and business failures.
Those projects and companies who make the investment in metrics have a competitive
advantage over those who do not. They have the advantage of more informed and timely
decisions that will ultimately make them more successful, with the best track records in
terms of bringing software projects to completion and achieving high levels of user
satisfaction.[5]

3.2 Benefits

Table 1 summarizes some of the costs versus benefits of metrics programs. This is
not a comprehensive list but highlights the more visible aspects. The largest benefit as
noted in the section above is the increase in knowledge of product and project status and
the ability to assess risks and facilitate contingency planning.

ITEM COST BENEFIT

Training Class costs Future expertise
Less time on project Consistency, standardization

Management More management time Less management time

Engineering Start up costs Increase productivity
Data collection time Reduce development time
Analysis time Fewer defects

Reduce defect find/fix time
Reduce maintenance
Increase reusability
Increase user satisfaction

Capital Expenses Purchase hardware/software

TABLE 1: Cost versus Benefits [6]

5

It is difficult, if not impossible, to place a dollar amount on the benefits of a metrics
program because as in the case of risk management, you are trying to measure something
that did not happen. The benefits derived are also not only applicable to the current
project but to future projects. As with any new project, whether it is implementing a new
engineering design or a metrics program, start up costs are high. But as management and
staff become familiar with the tasks and tools are developed, the costs decrease to a low
maintenance level.

3.3 Phases of Metric Programs

As products or companies initiate metric programs, either voluntarily or because of
contractual requirements, personnel progress through 4 stages of acceptance. Initially,
there is resistance to the idea of a metrics program, refusal to interact and feelings of
being threatened or possible mistreatment resulting from the metrics. The metrics team
need very persuasive and persistent social skills to initiate the data collection. This is
followed by a reaction stage; the metrics program and data collection are not going to
dissolve and the development team must learn to live with it. The metrics team now has
the developers attention and needs to show relevant value added by the metrics program.
The third stage is acceptance of the metrics program; the development team recognizes
the benefits and incorporates the metrics into the development infrastructure. The final
stage is the dependence of the development team on the metrics in the decision making
process. These stages are shown in Figure 2.

Metric Program Acceptance Phases

Stage

A
cc

ep
ta

n
ce

 L
ev

el

 Denial Reaction Acceptance Dependancy

Figure 2: Metric Program Stages

6

The length of time for each phase is generally project dependent but influenced by
many factors. The first projects to adopt a metrics program will have longer initial phases,
the entire concept of software development measurement is new and approached with
trepidation. As a project progresses through the stages, the costs of the metrics program
decreases and the benefits derived increase.

4. Basic Metrics Program

Metric programs are perceived to be expensive and hence unaffordable by software
development projects as discussed in the previous sections. But what is often not
recognized by development organizations, is that each project does not need a totally
unique metrics program, nor does each project need to incorporate all possible metrics to
have a successful metrics program. While it is true that every project is different, there are
also many aspects of all projects that are similar. All projects have a mission to complete.
All projects have a set of requirements that must be satisfied. Some design format must be
used to move the project from the requirements to code to ensure all requirements are
fulfilled and to ensure the components of the code work as a cohesive whole. From the
design, code is written. Standards and guidelines for module formats exist for most high
level programming languages. The testing phase has two primary objectives, validating the
software meets the specifications of the requirements and verifying the correctness (error
free). These common traits found in all software development projects allow for different
projects to use a similar metrics program, with a common set of attibutes representing
quality and risk characteristics.

The purpose of core attributes is to provide project managers with a common set
of characteristics to assess project quality and risks, regardless of the application
environment or the implementation details. The core metrics provide a starting point for
the project, decreasing initial metric program development costs and providing general
interpretation guidelines. From the core set, additional attributes and metrics can be
defined to supply information that is project specific or addresses a specific area of risk
that is of concern to the project.

4.1 Core Attributes

Prior to choosing the metrics for each life cycle phase, the measurable attributes
must be defined. These attributes are features or characteristics that affect the quality of
the product and can be used to estimate future risks. They are applicable to any project.
Projects can then place emphasis on the attributes that are important to their specific
goals.

The attributes used by the SATC are defines as follows:

Ambiguity - multiple interpretations
Completeness - all components contained within
Comprehensiveness - single test specification per requirement/design feature

7

Consistency - agreement of all levels with higher level documents
Correctness - specifications are fulfilled
Documentation - description of the content
Efficiency - availability and usage of resources
Error detection - rate errors located and repaired
Feasibility - ability to complete with specified resources
Maintainability - ease to locate and correct faults
Reuse - ability to apply or use module in a different content
Schedule - definitions of milestones and their attainability
Structure/Architecture - structure or framework of the module
Testability - rate of testing and code correction
Volatility - intensity and distribution of changes
Verifiability - ability to trace each component from requirement to software to test

4.2 Core Metrics

Core metrics provide a means of quantifying the attributes. Table 2 associates the
attributes and core metrics for each software development phase and serves as a basic
foundation that can be supplemented for project specific goals. There is not a one-to-one
mapping between the attributes and the metrics. In many cases, the metrics are applicable
to more than one attribute, and the attributes are measured through a combination of
metrics.

8

Life Cycle Phase Attributes Core Metrics

Requirements Ambiguity Baseline counts
Completeness Traceability
Consistency Terminology
Volatility Structure
Verifiability

Design Ambiguity Trace matrices
Completeness Complexity
Consistency
Volatility
Verifiability

Implementation Comprehensiveness Errors/faults/changes
Correctness Module size and complexity
Documentation Documentation
Feasibility Traceability
Structure/Architecture Resources
Reuse
Maintainability

Testing Testability Errors/faults/changes
Error Detection Coverage - Trace matrices

TABLE 2: Life Cycle Phase Attributes and Core Metrics

The core metrics in Table 2 are defined as follows:

Baseline counts - initial or base number of requirements
Complexity (of design) - data flow within and between segments
Documentation - internal or external commenting
Errors/faults/changes - count, type, criticality, and time to find/fix
Module complexity - logic, data, and calling within a module
Module size - line or token counts within a module
Resources - personnel hours or effort expended
Structure - level/depth within document requirement is specified
Terminology - phraseology of requirements e.g., use of imperatives, continuances,

weak phrases
Traceability - requirements traced to design component to code module to test

number

9

5. Developing and Implementing a Metrics Program

5.1 Where to Start

Once a developer decides to implement a metrics program, the next step is How.
How a metrics program is developed can control its success or failure. One approach is to
investigate tools available for metrics collection, purchase the tool, then collect and
attempt to apply whatever metrics are provided by the tool. This may work but has a
major hurdle - what will the data collected tell the management and developers about their
specific project; how will it help in evaluating the quality and projecting project specific
risks. Data collected just because it is available has minimal value at best and usually ends
up a waste of resources.

Successful metrics programs generally begin by focusing on a problem. At the start
of the metrics program, risk and quality goals must be established that address the problem
as discussed in Section 2. Related questions that management wants answered are
identified then the data that is needed to answer these questions are specified. This leads
to the tool specification for purchase or in-house development. Data collection can be
expensive if not carefully monitored - the temptation is high to collect all possible data and
decide how to use it later. This type of process generally leads to failure because the
quantity of data now overshadows the quality. Extraneous data should be discarded.

The sooner benefits are seen by both management and developers, the faster
metrics programs progress through the acceptance stages in Figure 2. Metric programs
should be designed to show visible benefits as soon as possible, this is the key to continued
support.

5.2 How to Start

5.2.1 Goal/Question/Metric (GQM) Paradigm

The Goal/Question/Metric (GQM) Paradigm is a mechanism that provides a
framework for developing a metrics program. It was developed by Vic Basili and H.
Dieter Rombach at the University of Maryland as a mechanism for formalizing the
characterization, planning, construction, analysis, learning and feedback tasks. The GQM
paradigm was developed for all types of studies, in particular studies concerned with
improvement issues. The paradigm does not provide specific goals but rather a
framework for stating goals and refining them into questions to provide a specification for
the data needed to help answer the goals.[1,2]

The GQM paradigm consists of three steps:
1. Generate a set of goals based upon the needs of the organization.
2. Derive a set of questions.

10

3. Develop a set of metrics which provide the information needed to answer the
questions.

1 - Generate a set of goals based upon the needs of the organization - Determine what it is
you want to improve. This provides a framework for determining whether or not you
have accomplished what you set out to do. Goals are defined in terms of purpose,
perspective and environment using generic templates:

• Purpose: To (characterize, evaluate, predict, motivate, etc.) the (process,
product, model, metric, etc.) in order to (understand, assess, manage, engineer,
learn, improve, etc.) it.

• Perspective: Examine the (cost, effectiveness, correctness, defects, changes,
product metrics, reliability, etc.) from the point of view of the (developer,
manager, customer, corporate perspective, etc.)

• Environment: The environment consists of the following: process factors,
people factors, problem factors, methods, tools, constraints, etc.

2 - Derive a set of questions - The purpose of the questions is to quantify the goals as
completely as possible. This requires the interpretation of fuzzy terms within the context
of the development environment. Questions are classified as product-related or process-
related and provide feedback from the quality perspective. Product-related questions
define the product and the evaluation of the product with respect to a particular quality
(e.g., reliability, user satisfaction). Process-related questions include the quality of use,
domain of use, effort of use, effect of use and feedback from use.

3 - Develop a set of metrics and distributions that provide the information needed to
answer the questions - In this step, the actual data needed to answer the questions are
identified and associated with each of the questions. As data items are identified, it must
be understood how valid the data item will be with respect to accuracy and how well it
captures the specific question. The metrics should be objective and subjective and should
have interpretation guidelines, i.e., what value of the metric specifies the product higher
quality. Generally, a single metric will not answer a question, but a combination of
metrics is needed.

Once goals are defined, questions derived, and metrics developed, matrices are
created to indicate their relationships. The first matrix is from goal to question, the
second from question to metric. These allow the developers to identify metrics applicable
to multiple questions and to guarantee for each goal there is more than one question and
more than one metric. A summary matrix from goal to metric can also be developed. The
matrices identify single relationships that may not be cost effective.

5.2.2 Goal/Question/Metric (GQM) Paradigm Example

The most effective way to understand a methodology is to review an example.
This section demonstrates how a small metrics program would be developed using the

11

GQM. The program starts with the goals, questions and proposed metrics, then
demonstrates how GSFC data could be used to answer the questions and satisfy the goals.

Four sample goals using the templates are shown in Figure 3. Goals 1 & 4 follow
the purpose template; Goal 3 uses the perspective template; and Goal 2 evaluates the
environment. The goals are not specific and are not limited to evaluating a specific phase
within the development life cycle. The goals are general and could be adapted with minor
modifications to any project development.

G1: To predict the schedule in order to manage it.

G2: The system must release on time with at least 90% of the errors located and
removed.

G3: Examine the maintainability risk from the point of view of the customer.

G4: To evaluate the product in order to improve it.

Figure 3: GQM Goals

Now questions are derived to quantify the goals. In this example only a limited
number of questions are specified. A question often supports more than one goal. It is
listed under the primary goal and secondary goals shown in parenthesis (). The metrics
needed to provide the answers to the questions is then chosen and is shown in italics. At
this point, COTS (Commercial off the shelf) tools are investigated, data collection
procedures are developed, and forms are designed. (These concepts are discussed in a
later section.) The goals with questions and metrics are shown in Figure 4.

12

G1: To predict the schedule in order to manage it.
Q1: What is the actual vs. expected effort level? (G2) effort
Q2: How stable are the requirements? (G4) req. cnt & modification

G2: The system must release on time with at least 90% of the errors located and
removed.

Q3: What methods are used for testing? (G2) % tests/method
Q4: When will 90% of the errors be found and all priority 1 errors closed? (G1, G4)

errors, effort, size
Q5: What is the discrepancy rate of closure? (G1) errors, closure status

G3: Examine the maintainability risk from the point of view of the customer.
Q6: What percentages of modules exceed the guidelines for complexity and size?
 (G2, G4) complexity, size

G4: To evaluate the product in order to improve it.
Q7: What modules are “high risk”? (G2, G3) complexity, size, errors

Figure 4: Goals/Questions/Metrics

Matrices similar to those in Figures 5 and 6 are completed. First the goals are
related to the questions in Figure 5 showing direct and indirect correlations.

GOALS
G1 G2 G3 G4

schedule
error

specifications
maintainability product

Q1- effort

Q
U

Q2 - requirements

E
S

Q3-test methods

T
I

Q4 - # errors

I
O

Q5 - error sch.

S
Q6 -module std

Q7 - module risk

direct corr

indirect corr

minimal corr

Figure 5: Goals --> Questions

13

From Figure 5 it can be determined that Goals 1, 2 and 4 have multiple questions
supply data but Goal 3 is weak. Based on the priority of the project, more questions, and
hence data, might be needed to support this goal. This matrix also indicates that except
for Question 3, most questions support multiple goals. Again, the project must determine
the acceptability of this limited support based on their objectives.

Figure 6 is the matrix that relates the questions to the metrics. A metric that
supports only one question may not be cost effective to collect.

QUESTIONS
Q1 Q2 Q3 Q4 Q5 Q6 Q7

effort requirements test meth # errors error sch. module std module risk

M1 - amt effort

M
E

M2 - requirement cnt

T
R

M3 - test/mod

I
C

M4 - errors

S
M5 - mod complexity

M6 - mod size

direct corr

minimal corr

Figure 6: Questions --> Metrics

5.2.3 Goal/Question/Metric Data Analysis Example

In this section the goals and supporting questions are discussed using data from
GSFC projects. It is SATC policy that all reported data is anonymous so project
characteristics such as purpose (ground or flight), application (command and control,
simulator, data), and language (FORTRAN, C or C++) are used as identification for
comparisons across projects.

After the metrics are presented and analyzed for each Goal/Question section, a
status of the risk will be discussed. The SATC model applies the following classifications
for risk levels:

LOW - Very likely to meet objectives if current trend continues. Does not need
contingency plans.

MODERATE - Based on current trend, likely to meet objectives. Should have
contingency plans.

HIGH - Not likely to meet objectives based on current trend. Implement
contingency plans immediately.

14

G1: To predict the schedule in order to manage it.
Q1: What is the actual vs. expected effort level? (G2) effort
Q2: How stable are the requirements? (G4) req. cnt & modification

The metrics for this goal and questions are effort, requirement and modification
counts. Effort data refers to the number of hours personnel work on a specific activity,
such as training, requirements, design, code and unit test, system test or management.
The SATC masks this data using an anonymous personnel identification number to
prevent management from using it as an personnel evaluation tool. Management is given a
weekly report showing total hours per activity. Requirement and modification counts are
a straight count of the number of requirements that the project must fulfill and a count of
the number of increases or decreases to the base number of requirements.

Prior to the start of a project, management should estimate the amount of time
required for each phase. This allows for management to have the correct development
skill mix available at the appropriate time. Figure 7 shows the percentage of time four
different development applications spent in the phases. The top two are divisions at
GSFC; SPA tests new software engineering development concepts using extensive
prototyping, and SEL is well established in developing Flight dynamic software. The
bottom two graphs are from R. Grady’s book Practical Software Metrics for Project
Management and Process Improvement. [5]

Req/Design
24%

Implementation
62%

Test
14%

SPA SEL

Req/Design
29%

Implementation
26%

Test
45%

Req/Design
33%

Implementation
30%

Test
37%

Systems

Req/Design
38%

Implementation
34%

Test
28%

Applications

Goddard Space Flight Center

Industry

Figure 7: Time per Phase by Application

15

Figure 8 is the Rayleigh Manpower Curve for effort expenditure for a typical
software project. [11] Projects ramp up to full speed fairly quickly, then taper off as the
maintenance phase approaches. Applying this curve assists managers from having too few
or too many personnel.

Rayleigh Manpower Curve

0

1

2

3

4

5

6

7

8

9

10

0 41 81 12
0

16
0

20
0

23
9

28
4

32
2

36
3

40
0

43
8

48
3

52
2

56
5

61
0

64
0

67
3

71
9

76
2

79
7

84
0

88
6

92
0

96
0

10
00

10
40

Time

E
ff

o
rt

Figure 8: Effort Expenditure Curve

Figures 9 & 10 address Question 2, the stability of the requirements and the
modifications to requirements. Industry has shown that unstable requirements increase the
risks to final project. Developers cannot design or code a moving target and changes later
in the life cycle have ripple effects that may impact both product and schedule risk. Figure
9 indicates the number of requirements is stabilizing and looks good but Figure 10
indicates there are still numerous changes.

16

Total Number of Requirements

0

100

200

300

400

500

600

700

800

900

1000

1Q94 2Q94 3Q94 4Q94 1Q95 2Q95 3Q95

Calendar Quarter

Q
u

an
ti

ty

Figure 9: Requirement Count - Stability

Modifications to Requirements

0

50

100

150

200

250

300

350

400

450

1Q94 2Q94 3Q94 4Q94 1Q95 2Q95 3Q95

Calendar Quarter

Q
u

an
ti

ty

New

Modified

Deleted

Figure 10: Requirement Modification - Stability

17

Project managers apply the two effort concepts, percentage of effort per activity
and total effort, to their projects by collecting data and comparing it to expected results
shown in Figures 7 and 8. Extensive deviation would indicate a potential problem area
and risk to the schedule. Schedule slippage can result in decreased test time and hence
further risk.

The requirement data indicates the schedule is still at risk because the requirements
are still being modified, but since the count is stabilizing, the added risk is minimal.

G2: The system must release on time with at least 90% of the errors located and
removed.

Q3: What methods are used for testing? (G2) % tests/method
Q4: When will 90% of the errors be found and all priority 1 errors closed? (G1, G4)

errors, effort, size
Q5: What is the discrepancy rate of closure? (G1) errors, closure status

Figure 11 specifies the testing methods that will be applied for this project. All
requirements have been assigned a testing method, 2% of the requirements will be verified
by demonstration and 6% by inspection. It is up to project management to determine
which requirements are verified by each method and if the verification methods are
acceptable.

0 %

6 0 %

6 %

2 2 %

1 2 %

0

6 0 0

1 2 0 0

1 8 0 0

2 4 0 0

3 0 0 0

3 6 0 0

ANALYSIS DEMO INSPECTION TEST NONE

VERIFICATION METHOD

Q
U

A
N

T
IT

Y

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

7 0 %

8 0 %

9 0 %

1 0 0 %

P
E

R
C

E
N

T
A

G
E

QUANTITY PERCENTAGE

Figure 11: Testing Methods

Question 4 specifies that 90% of the errors be located. This implies the ability to
estimate the total number of errors in the software. One industry guideline that is also
recommended by the SEL is to expect approximately 7 errors per 1000 Source Lines of

18

Code. This estimate is helpful in an overall estimate of the number of errors, but does not
take into account the rate at which errors are found. The SATC is working to release the
Waterman Error Trending Model for determining the status of testing by projection of the
number of errors remaining in the software and the expected time to find some percentage
of errors. This model uses the Musa Reliability model and the Raleigh curve for effort
estimations. The SATC is developing this model rather than using the standard Musa
model because it is less sensitive to data inaccuracy and provides for non-constant testing
resource levels. Figure 12 is an example of the model’s application.

Error Trending and Prediction

0

200

400

600

800

1000

0 100 200 300 400 500

Time (days)

C
u

m
u

la
ti

ve
 S

/W
 E

rr
o

rs

Model

Data Predicted Total Errors = 1 1 0 0

Found to date = 3 6 5

Eventually Found = 9 0 5

Now

Figure 12: Waterman Error Trending Model

If it is assumed that this project should release its product shortly, Figure 12
indicates that only about 40% of the errors will be found.

Figure 13 indicates the rate at which discrepancy reports are closed. No
discrepancies have been reported since 3/20/95 and all were assigned a status by 5/8/95.
Trend analysis indicates all discrepancies will be closed by the conclusion of this phase.

19

WEEK

0

100

200

300

400

500

600

3
/
7
/
9
5

3
/
1
3
/
9
5

3
/
2
0
/
9
5

3
/
2
7
/
9
5

4
/
3
/
9
5

4
/
1
0
/
9
5

4
/
1
7
/
9
5

4
/
2
4
/
9
5

5
/
1
/
9
5

5
/
8
/
9
5

5
/
1
5
/
9
5

TOTAL OPEN CLOSED No Status

Figure 13: Discrepancy Report Closure Rate

Since Question 4 indicates Priority 1 discrepancies closure is critical, Figure 14
assesses the status of open/closed by priority and indicates that all Priority 1 should close
in one more week (8/28/95). This graph also indicates an extraneous problem with
database maintenance - Priority 3 discrepancies are closed before they are opened.

 3/07/95 through 8/21/95

0

100

200

300

400

500

600

PRI 1 Open PRI 2 OPEN PRI 3 OPEN TOTAL OPEN

PRIORITIES

N
U

M
B

E
R

Figure 14: Discrepancy Closure Rate by Priority

20

The analysis of the data for this section indicates that all components have been
assigned a verification method, discrepancy reports are expected to be closed within the
specified time frame, including Priority 1, which were a low percentage of the total
number. The risk of not meeting this goal of releasing on time is negligible. However,
using the results in Figure 12, the project will not meet the specified 90% errors found in
Question 4. This increased the risk to Goal 2 to high.

G3: Examine the maintainability risk from the point of view of the customer.
Q6: What percentage of modules exceeds the guidelines for complexity and size?
 (G2, G4) complexity, size

Maintaining code encompasses locating and fixing an error or altering existing
code in response to a change request. Both cases require the ability to locate sections of
code where a specific task is done or tracking values through code. Modules of code that
are smaller in size, lower in complexity and have a high comment percentage are generally
easier to change. The amount and type of variables transferred between modules (fan
in/fan out) also affects the maintainability. Most questions need a combination of metrics
to fully support the goal. For this question we analyze a size/complexity correlation for an
initial answer.

Figure 15 is a graph template developed by the SATC to use as an indicator of the
module risk levels. The x-axis represents the number of executable statements in a
module; the y-axis is the extended cyclomatic complexity (number of test paths) for the
module. There are many different guidelines for both measures as to when risk increases
or the code is decreases in acceptability. The parameters in Figure 15 are based on
guidelines from various industry, military and NASA sources as well as error correlations
from GSFC data.

21

100

90

80

Extended

70

Cyclomatic

60

Complexity

50

40

30

20

10

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

 Executable Statements

VERY HIGH (6)

MODERATE (3)

NONE (0) LOW (1)

LOW -
MODERATE (2)

MODERATE-
HIGH (4)

HIGH (5)

Figure 15: Classification of Module Risk

To apply the graph in Figure 15, each module of code
(procedure/function/class/method - language dependent) is plotted as shown in Figure 16.
The percentage of modules in each region and a list of module names in Regions 4, 5, and
6 are supplied to the project management. It is recommended that developers further
investigate the modules in these regions using further using metrics such as fan in/ fan out,
comment percentage and number of errors. One observation made by the SATC is that C
and C++ code have a lower percentage of modules in Regions 4, 5 and 6 than FORTRAN.

22

FORTRAN

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400 450 500

Executable Statements

E
xt

en
d

ed
 C

yc
lo

m
at

ic
 C

o
m

p
le

xi
ty

0 1

23

4

5

6

Figure 16: Modules at Risk in a FORTRAN Project

For the project code shown in Figure 16, there is 22% of modules in Region 5
where the risk is High, and 9% of the modules in Region 4 (Moderate to High risk).
Additional metrics such as documentation, structure and data flow should be investigated
for the modules. Based on current information, this project would be rated at a moderate
risk of meeting Goal 3 - maintainability.

G4: To evaluate the product in order to improve it.
Q7: What modules are “high risk”? (G2, G3) complexity, size, errors

To answer this question, multiple metric inputs are needed. One factor is the risk
from Table 3. The number of errors by criticality also serves as an input. Comment
percentage also supplies information relative to risk. Factors such as fan-in/fan-out and
internal data flow also influences risk but are not shown in Table 3.

Module
ID

Size/Complexity
Risk

Errors (crit 1 2 3) Comment % Risk Total

113 none 12 (0 0 12) 40% low
76 none 10 (0 1 9) 37% low
158 mod-high 10 (0 2 8) 37% moderate
57 high 9 (1 2 6) 25% high
2 very high 8 (1 2 5) 27% high
95 moderate 7 (1 2 4) 15% moderate
152 very high 1 (1 0 0) 3% high

Table 3: Module Risk Value

23

For this goal, the objective is to identify areas that management should focus on to
improve. Table 3 indicates the modules 158, 57, 2 ,95 and 152 all need further
investigation and possibly reengineering. Since these 5 modules are less than 1% of the
total modules, the risk of the code is negligible.

5.2.4 Goal/Question/Metric Example Conclusion

In the previous sections the risk levels for the goals was estimated based on the
metrics analysis. In presentations to management, especially upper levels, a version of the
“fever chart” has been found to be effective. However, since the colors used in fever
charts (green, yellow, red) do not reproduce well, symbols are used. These symbols
follow user interface guidelines using the darkest shade for the most important concept
and a relevant symbol ($) to reinforce the meaning. Figure 17 summarizes the risks for the
goals in the GQM example.

Risk Level

G G1 Schedule
O G2 Errors $$$
A G3 Maintainability
L G4 Product - code
S

Negligible (Low)
Moderate

$$$ High

Figure 17: Summary of Goal Risk Level

6. Data Collection

Although the focus of the paper is on relevant metric analysis, some discussion is
needed on general data collection guidelines - what to collect and how to collect it. If
data input is invalid, the resulting analysis will be skewed.

6.1 Data

Metric programs are based on raw data and measurements collected from multiple
sources. Successful metrics programs should initially focus on what data should be
collected and the format of the data collection. There is an overwhelming amount of data
available that can be very expensive to collect and may not provide the answers. The
SATC has developed four general guidelines for metric programs.

24

1. Low resource usage, non-intrusive
Although there is a cost for a metric program, it should not be so expensive that

metric collection is not feasible. This “cost” includes both financial and personnel
resources. Many organizations assume that the cost of measurement is so excessive that
they cannot justify establishing a metrics program. While measurement is not free, it can
be tailored to fit the goals and budgets of any software organization. A metrics program
must be undertaken with the expectation that the return will be worth the investment. The
costs must be incorporated in the project budget or there will be frustrations, attempts at
shortcuts, and a failed metrics program.

Data collection for a metrics program should not be disruptive to personnel. Data
collection should be an intricate part of the work structure, automated whenever possible.
Automation increases the accuracy and decreases the interruptions. Automated input is
also preferable, research indicates that electronic forms tend to be completed faster and
more accurately than paper forms. Existing systems and data should be used whenever
possible.

2. Non-threatening, assess projects and products, not people
The second guideline for a successful metrics program is to focus on measuring the

project and the products, not the people. Metric programs can successfully evaluate
processes, but the temptation to use the resulting metrics to evaluate the people
performing the processes must not be succumb to or the metrics program has a short life
span and is doomed to failure. When people feel threatened by metrics, they either do not
produce the metrics or skew them to reflect positive results. Metrics programs used to
evaluate personnel generally yield invalid results and have a very limited life span, hence
wasting time and money.

Two concepts reduce the threatening influence of metric programs. One method is
to keep all data anonymous, using identification numbers instead of personnel names.
Using an independent third party to assign and maintain the id numbers helps insure
confidentiality. The second concept that assists in reducing metric stress is education.
Anyone associated with a metrics program should know the specific purposes and
objectives of the metric programs, what metrics are being collected, and how they are
collected (especially if the process is automated or invisible to the person). As the analysis
is done, sharing the results and the conclusions not only reduces some of the metric
induced stress, but allows personnel to input an alternative conclusion or an explanation
for why metrics imply a specific conclusion.

3. Yield relevant, reliable information
When developing a metric program, it is tempting to collect as much data as

possible since the data might be needed later, This approach usually leads to metrics
programs that focus on where to store the data rather than how to analyze the data and
use the results. The data collected should focus directly on the objectives of the project
manager. All data that is collected should be used to provide immediate feedback to
managers, not just stored for future use. Projects should collect what they can use and use
what is collected. This often means starting with a small, limited set of data until that data
is evaluated, the application understood and then the results applied. The key to

25

continued funding of metric programs is often showing management immediate visible
benefits derived from the metrics; the promise of only future benefits often leads to
reduced funding.

4. Adaptable across projects, language and application independent
Although a metrics program should focus on current objectives, it should be

designed so it could be adapted for projects in other languages and in other application
fields. Data should be sufficiently general to allow for comparisons to other projects, thus
increasing the applicability of the metrics beyond a single projects and permitting general
guidelines to be developed. Similar data can be stored in a historical database to provide
information for continuous improvement and generic understanding of project
development.

6.2 System Input

The quality of the system output is determined by the quality of the system input.
Having an effective, usable metrics program depends on the accuracy and reliability of the
data input by the users and by the system. Input from system users requires careful
consideration to form or screen design. Some guidelines for form design are:

1. Effectiveness - Ensure that forms meet the purpose for which they are designed. Keep
information relevant to task and avoid duplication of information.

2. Accuracy - Design forms to assure accurate completion - Use internal checks for sums
(horizontal/vertical).

3. Ease of use/simplicity - Make forms easy to complete. Forms should flow from left to
right and top to bottom to avoid frustration and extra time.

4. Consistency - Logical grouping of the information, consistent captioning, use of
check-off responses, and table input decrease time needed to complete.

5. Attractiveness - Keep forms attractive. Forms should look uncluttered, appear
organized and logical, provide sufficient space for completion, and use different fonts
and line weights for capturing attention.

These guidelines for good form design are transferable to screen design, but there
are unique qualities of screen displays that must be considered. Two unique design
problems for screens are the use of color and the use of icons.

Color is an appealing and proven way to facilitate computer input and allows for
contrast of foreground and background. The top five most legible combinations of
foreground lettering on background are:

Black on Yellow
Green on White
Blue on White
White on Blue
Yellow on Black

26

Icons are pictorial, on-screen representations symbolizing computer actions that
users may select. In choosing or designing icons, the shapes should be readily
recognizable, using standard icons when possible. Icons are useful if meaningful but
cuteness should be avoided. Figure 18 shows examples of icons whose meaning may not
be readily apparent, and thus should be avoided.

Rabbit - COPY a file Tree - PRINT Door - ENTER data

Figure 18: Confusing Icons

6.3 On-Line Input Example

In order to facilitate data collection and reporting, the Software Process
Assessment activities in the Data Systems Technology Division at GSFC, in conjunction
with the SATC, developed MERIT - Metrics Examination, Reporting and Interpretation
Tool. This tool was designed for capturing, maintaining and displaying software metrics
data through an on-line process using the World Wide Web. At this time MERIT stores
two types of software metrics data: Personnel resources metrics and code metrics but
expansion is planned to include error data.

 Personnel submit weekly reports of their time spent on a project using the World
Wide Web that acts as a front end to MERIT. MERIT then imports the data into the
project database. Once the data has been imported into MERIT, the project manager may
produce a variety of reports and graphs of the information, allowing them to track
progress and discover any problems in the development effort. Administrators (usually
not project managers for anonymity of the users) can also use MERIT to check the status
of personnel form submissions and notify delinquent users through electronic mail with
minimal key strokes.

MERIT is in the initial test phases but reports on it appear promising.

7. Conclusion

Metric programs are initiated to answer a question or provide numerical input to
solve a problem. The first step in developing a metrics program is to identify what are the
goals or objectives of the program, then stay focused on them. The SATC applies goals
to evaluate the quality of products (requirement documents through test applications) and

27

provide information to project and manage risks. The objectives can be expanded into
specific goals using the structure of the Goal/Question/Metric templates.

The second step is to define the attributes that are to be measured. These
attributes are generally a subset of the quality attributes and chosen based on the project
objectives and goals. If the GQM is used, some of the goals will relate to the attributes.

The next step in developing the metrics program is to clarify and quantify the
goals. This is done by specifying questions and identifying metrics and data that is needed.
At this point a tool is chosen based on the needs of the project. Some static analysis tools
are listed in Appendix A.

The final and a very critical step is to close the loop - provide management with
answers to their questions based on the metric analysis. The key to continued success of a
metrics program is immediate, visible benefits. It must do the job it was designed to do
and supply management with usable information to solve their current problem in a timely
fashion.

Appendix A: Code Analysis Tools

Below is a list of code analysis tools identified by the SATC. It is not a comprehensive
list. This list does not indicate recommendation by the SATC but could serve as a starting
point for tool investigation.

AdaMET, Dynamics Research Corporation, Andover, MA.
Checkpoint, Software Productivity Research, Burlington, MA.
DecisionVision, Software Business Management, Westford, MA.
Logicore Software Development Environment, Logicon, Arlington, VA.
MetKit, Bramer Ltd., Fleet, Hants, UK.
McCabe Object-Oriented Tool, McCabe & Associates, Columbia, MD.
ParaSET, Software Emancipation Technology, Inc., Lexington, MA.
PR:QA, ASTA Incorporated, Nashua, NH.
Rational Environment, Rational, Bethesda, MD.
Spiders-3, Statistica, Inc., Rockville, MD.
UX-Metrics, Set Laboratories Inc., Mulino, OR.

28

References and Additional Sources of Information

[1] Basili, Victor R., and Rombach, H. Dieter, "The TAME Project: Towards
Improvement-Oriented Software Environments", Institute for Advanced Computer
Studies, University of Maryland, UMIACS-TR-88-8, January, 1988.

[2] Basili, Victor R., and Rombach, H. Dieter, "Tailoring the Software Process to
Project Goals and Environments", Department of Computer Science, University of
Maryland, ACM, 1987.

[3] Daskalantonakis, Michael K., "A Practical View of Software Measurement and
Implementation Experiences within Motorola", IEEE, 1992.

[4] Fenton, Norman: Software Metrics: A Rigorous Approach, Chapman & Hall,
London, UK, 1991.

[5] Grady, Robert, Practical Software Metrics for Project Management and Process
Improvement, Prentice Hall, 1992.

[6] Gillies, Alan, Software Quality, Theory and Management, Chapman & Hall
Computing, 1992.

[7] Kitchenham, B., Pfleeger, S.L., “Software Quality: The Elusive Target”, IEEE
Software, January, 1996.

[8] Kitchenham, B., Walker, J., “A Quantitative Approach to Monitoring Software
Development, Software Engineering Journal, January, 1989.

[9] Jones, Capers, Applied Software Measurement, Assuring Productivity and
Quality, McGraw Hill Inc., 1991.

[10] Moller, K.H., and Paulish, D.J., Software Metrics, A Practitioner’s Guide to
Improved Product Development, Chapman & Hall Computing, 1993.

[11] Putnam, L., Myers, W., Measures for Excellence: Reliable Software on Time,
Within Budget, Yourdin Press, 1992.

[12] Sommerville, Ian, Software Engineering, Addison-Wesley Publishing Company,
1992.

[13] Zuse, Horst: Software Complexity: Measures and Methods, Walter de Gruyter,
Berlin, 1990.

